20

-continued							
NI	0.8	6.4	1.2	0.3	1.0	1.0	_
Q_1		_	_		_		
Q_2		_	_		_	_	5.0
A_{I}			_			_	
BENT		_		_	_		6.0
STPP	_	5.6	25.0	39.4		_	28.0
PYRO	_	22.4	5.9	_	_	_	_
NTA		_		_	_		3.0
Z ₄ A	29.0	_		-	27.0	10.0	_
CARB	17.0	12.2	16.8	12.0	17.0	15.0	12.0
SIL	2.5	6.0	4.7	5.5	2.0	2.0	6.0
ODS	_		_		_	_	-
TMS/TDS	_	_	_			_	_
ACR1	6.0	_		_	_		_
ACR2	_		_	_	_	_	-
MgSO ₄	2.0	_	_	_	_	_	
Na ₂ SO ₄	15.0	20.0	10.0	7.0	20.0	20.0	24.0
Chelant	1.0	_	0.4		_	_	-
CMC		_	_	_	_		_
PB ₄	15.0	5.0	5.0	_	_		_
PB ₁	4.0	_		_	. 	_	_
TAED	3.0	2.0	_	_	_		_
NOBS	_	_	8.0	_	_	_	_
INOBS	1.0		_			_	_
SRP	1.0	_	_		_		_
Product of	4.0	4.0	4.0	3.0	6.0	10.0	2.0
Example 17							
H ₂ O and minors	To 100						
			36	37	7	38	39

6.0 6.0 14.0 LAS TAS 3.0 3.0 12.0 NI 6.0 6.0 **CARB** 10.0 7.0 SIL 7.0 3.0 15.0 20.0 20.0 20.0 Na₂SO₄ PB₄ 18.0 10.0 10.0 2.0 2.0 2.0 2.0 TAED 2.0 30.0 15.0 Product of Example 17 20.0 25.0 To 100 H₂O and minors

What is claimed is:

1. A random copolymer especially adapted for use as 40 a dispersant in laundry detergent compositions, said random copolymer having a molecular weight in the range from about 635 to about 50,000 and comprising from about 0.10 to about 0.95 mole fraction of repeat units of the formula

MAO | -(CHCH₂)-

wherein M is sodium, A is selected from—OC-(O)C(L)HCH₂(O)C—, —OC(O)CH₂C(L)H(O)C—and mixtures thereof and L is selected from the group consisting of aspartate, glutamate, glycinate, ethanolamino, β-alanate, taurine, aminoethylsulfate, alanate, sarcosinate, N-methylenthanolamino, iminodiacetate, 6-aminohexanoate, Nmethylaspartate and diethanolamino; wherein said random copolymer is produced by a process comprising

 (i) reacting a polyvinyl alcohol with maleic anhydride to produce a butenedioate half-ester of said polyvinyl alcohol; and

(ii) reacting said butenedioate half-ester with an amine reactant selected from the group consisting of aspartic acid, glutamic acid, glycine, β-alanine, ethanolamino, taurine, aminoethylsulfate, alanine, sarcosine, N-methylethanolamine, iminodiacetic acid, 6-aminohexanoic acid, N-methylaspartic acid and diethanolamine;

provided that in step (ii), the alkalinity is controlled by means of a carbonate-buffered reaction medium.

 A random copolymer according to claim 1 wherein in step (ii), said reaction medium is a concentrated aqueous reaction medium.

3. A random copolymer according to claim 2 wherein L is aspartate and said amine reactant is aspartic acid.

4. A random copolymer according to claim 3 wherein step (i) comprises reacting a mixture formed from said polyvinylalcohol and said maleic anhydride together with tetrahydrofuran and an effective amount of a sodium acetate catalyst; provided that said mixture comprises in total no more than from about 5% to about 20% tetrahydrofuran; whereby a high yield of said butenedioate half-ester is secured.

5. A random copolymer according to claim 4 wherein the butenedioate half-ester of said polyvinyl alcohol, produced in step (i), is, prior to step (ii), purified by partitioning into the lower layer of a tetrahydrofuran/water mixture, said mixture having a volume/volume ratio of said tetrahydrofuran and water ranging from about ½ to about 1/12.

50

55

60